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ABSTRACT

The mechanical properties of any material with a discontinuous second phase dis-

persed in a matrix are recognized to be influenced by the distribution of the second-

phase particles. Current models for the prediction of material properties from particle

distributions are based on the assumption of a random particle distribution. Through

computer simulation, nearest-neighbor particle spacings have been calculated for ran-

dom and non-random distributions. For low fractions, random distributions approach

the theoretical spacing predicted from consideration of random, infinitesimal points. For

finite sized particles, increasing fraction results in larger spacings than predicted for

infinitesimal points. For very high fractions, the spacing approaches that for regular

(crystalline) arrays. Also, metal matrix composites initially possess clustered particle

distributions. Upon processing, such distributions can be transformed into banded dis-

tributions with areas of both high and low density. With sufficient processing, random

distributions can be attained. Non-random (banded) distributions weie simulated.

Sufficient banding results in reduced average particle spacing
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I. INTRODUCTION

In many two-phase materials, one phase is discontinuous and distributed in some
manner in a matrix of the other phase. The mechanical properties of such two-phase
materials may be altered according to how the second-phase particles are distributed
thioughout the material. Of course, the size and shap. as well as distribution of these
particles in the material may also influence the materials strength and ductility.

For example, th2 ability of dislocations LO move in a material has a great effect on
the materials strength and ouctility. Blocking this dislocation movement through the
presence of particles within the material represents a strengthening process. If these
particles act as points which can pin the ends of dislocation segments and cause them

to bow, the mechanism is termed precipitation hardening or dispersion strengthening.
As the radius of curvature of the bowed dislocation is decreased the required stress in-
creases. This leads to Orowan's equation [Ref. 1] for this mechanism

2Gb
L(i.l)

where r is the applied shear stress, G is the shear modulus, b is the dislocation Burger's
vector and L the average distance between the two pinning particles and is a critical
parameter in this equation. Different kinds of particles and their different types of dis-
tributions can have varying effects upon Orowan's equation. For instance, it is known
that the strength of the particles themselves influences the overall strength of the mate-

rial. Additionally, L, the characteristic distance, can be influenced by such parameters

as the finite size of the particles, the volume fraction of the particles, and whether or not
these particles are distributed in any particular pattern.

Alternatively, in an effort to produce stiff, strong, lightweight metallic materials
considerable research has been done on the reinforcement of metallic materials with
discontinuous fibers and particles. Much of the work done in this area has been con-

centrated on the reinforcement of materials using particles. Factors such as particle size

and volume fraction have a known affect on the properties of materials IRef 2]. One
such effect that has been demonstrated is the trade-off between strength and ductility in

a metal matrix composite (MMC) material and this occurs as a result of increasing

particle size [Ref. 3].



Processing techniques such as extrusion can also have an effect on the distribution
of the particles within the matrix [Ref. 2]. Many MMC's particle distributions chang,.
according to the processing to which they are subjected. Clusters of reinforcement par-
ticles may be broken up by rolling which leads to a more random distribution. Rolling
can also cause the distributions to become banded. An example of random and banded
particle distributions found in an Al 6061 MMC material are shown in Figure 1 and
Figure 2. The reinforcement is A1203 in this material. The banding shown here evolved
as a result of the material's thickness being reduced approximately 66 percent by rolling
at 350'C. [Ref. 41
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Figure 2. Banded particle distribution in a partially processed Al 6061 alloy com-

posite

In order to accurately assess and compare these different types of mnicrostructures

it would be desirable to be able to quantitatively measure a characteristic parameter of

these particle distributions such as average nearest neighbor particle spacing. Properties

of materials containing particle distributions Might then be inferred from this measure-

ment. However, existing methods which attempt to do this can only be used on mate-

rials with random particle distributions. These models also assume that these particles

arc infinitesimal points, which is clearly not valid for real materials. There are models

which can be used for finite sized particles, but these models require that the particles

be distributed in a regular arra3, for instance in a manner analogous to a closed-packed

arrangement in a crystal lattice.

This studv was initiated to address the problem of random distributions of finite
sized. non-oN-rlapping particles using a computer simulation method. This simulation

was then modified so that banding could be introduced into these f'iite sized, non-
overlapping particle distributions. Calculations of the average nearest neighbor particle

posite



spacing for different distributions were then made. For both mathematical and com-

putational convenience it was decided to restrict the analysis to two dimensional rep-

resentations as opposed to three dimensional models. The two dimensional approach

makes graphiLs much easier, and reduces the computing time -equired. At the same

time, the two dimensional results will be applicable to the three dimensional distribution

through inference.

4



11. BACKGROUND

Existing app:oaches for calculating average nearest neighbor particle spacings on a
two dimensional I lanar section assume that the particles are infinitesimal points and

that they are dist ibuted randomly. One common method for calculating average

nearest neighbor particle spacing for random distributions of point particles is described
by Underwood [Ref.5]. The approach begins with the above assumption tha. the parti-

cles are iafinitesimally small, mathematical points. These points must then be distrib-

uted co.apletcly random throughout an area. Arbitrarily starting at any one of these

points, he develops a function which describes the probability of finding another particle

nearby. Starting at an arbitrary particle, the probability function is integrated over an

expanding circle of radius r about the infinitesimal point as indicated in Figure 4.

Figure 3. Integration about an infinitesimal point

5



The final result is

6 = 0.5 A- '-'  (P.1)

where 6 is the average value of the nearest neighbor particle spacing and N is the

number of particles per unit area. The number of particles per unit area is usually cal-
culated in practice by marking out an area on a micrograph of the material being studied
and then counting the number of particles within that area, which provides then a value

of N. In turn, 6 is then calculated via equation (2.1).
At the opposite end of the spectrum from randomly distributed infinitesimal points

is a perfectly regular distribution, such as hexagonal, of finite sized particles. A ge-

ometric analysis of a hexagonal distribution such as that shown in Figure 4

Figure 4. Hexagonal particle distribution

gives equation 2.2 as the result for average nearest neighbor particle spacing.

6 = 1.075,V -0  (2.2)

6



Here again, 5 is the average nearest neighbor particle soacing and N is the number of

particles per unit area.

The above cases represents extremes in particle distributions. The first represents

infinitesimally small points distributed randomly. However, real particles are not

infinitesimal points, but instead, are of finite size and do not overlap. The fact that these
particles are non-overlapping affects their distribution. Since these particles cannot

overlap one another their distributions are not truly random because particles are pre-

vented from occupying any position which would cause them to overlap with one an-

other. This would affect the results of the integration process which resulted in equation

(2.1) although this problem does not appear to have been addressed theoretically. The

second case mentioned above applies only to distributions where the particle distrib-

utions are regular, which is also not an accurate description of real materials. Therefore,

it can be said that real materials do not fit either of these models perfectly and that the

accuracy of results obtained for such materials using the above methods is somewhat

suspect.

In order to accurately apply Orowan's equation (2.1) it is necessary to know pre-

cisely what the characteristic parameter L is. For the above reasons a simple calculation

for L in real materials is not possible. As a result of this it is often necessary to derive

a value for L by actually counting the particles per unit area in a micrograph of the

material. Even if it was possible to exactly calculate a value for L microstructurally,

there is some question as to what L should really represent. Some doubt exists as to

whether a dislocation actually bows between a particle and its nearest neighbor or be-

tween the particle and it's second or third nearest neighbor [Ref. 6].

It is therefore necessary to develop a computer simulation which can handle both

random and banded distributions of finite sized particles. Once these particle distrib-

utions are generated by the computer it is then possible through direct calculation to

accurately compute the average nearest neighbor particle spacing for various particle

distributions.

It is recognized that a computer simulation inherently contains many limitations.

For ease of calculation this program generates two dimensional particle distributions

versus real material three dimensional particle distributions. Additionally all of the

particles are required to be of uniform size and shape. This simulation does not take

into account how or why the particles become distributed as they are. It cannot account

for particle-particle interactions that can also affect their distributions, or the effect of

various processing techniques which can introduce these different distributions. Finally,

7



it is recognized that the statistics of such a model are complex. Varying such parameters

as the size of the particles, the number of particles being positioned and changing the

size of the area into which the particles are being positioned can introduce statistical

variations into the results being obtained. Therefore several sets of data were generated

in an attempt to minimize the statistical variations.



III. EXPERIMENTAL PROCEDURE

A. OVERVIEW
The construction of the particle distribution model and calculation of the spacing

parameters was accomplished with a computer simulation. The programs needed to
create these simulations were written in Turbo Pascal and run on an IBM personal

computer. The programs were based upon a program written by A. Geltmacher [Ref 7J

which randomly positioned holes within a square array. A copy of these programs is

provided in appendices A and B.

For this project it was necessary for the computer to place particles of finite size in
both random and banded distribution patterns without the particles overlapping. In

order to accomplish this, two separate but similar programs had to be written, one for
the random distributions, and one for the banded distributions. From the random and

banded particle distributions that were generated, nearest neighbor particle spacing cal-

culations were made. The algorithm that these two programs followed is summarized

in Figure 5.
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B. RANDOMI PARTICLE DISTRIBUTIONS

The input portion of this program requires the operator to Input the size of the two

dimensional area that is to be fidled with particles. In addition, the size of the particles

and the area fraction of the specified two dimensional area that is to be filled with par-

ticles, must also be input. The define parameters portion of the program then deter-

mines the number of particles that must be positioned to satisfy the area fraction

requirements.

The next step of the program is to position the particles. I lere, a random number

generator is called that gives both an X and Y coordinate at which Lhe particle can

temporarily be positioned within the specified area. After this has been accomplished

the computer checks to insure that the particle presently being positioned does not

overlap any previously positioned particles. If. for example, the computer is attempting

to position particle number five, it must calculate the center to center spacing from

particle five to each of the four previously positioned particles. If any of these center

to center spacing measurements is less than twice the radius of a particle, particle over-

lap has occurred and this potential position Fbr particle five is rejected. The computer

then cycles back to the random number generator. picks a new X and Y coordinate into

which the particle is temporarily placed. The particle overlap check is again performed

and if it is found that the new position does not overlap any previously positioned par-

ticle, then particle five is permanently positioned. ihis process is repeated until all of

the particles that must be positioned to satisfy the area fiaction requirements have been

sited.

After the particle distributions have been generated the computer is ready to calcu-

late the avcrage nearest neighbor particle spacing. ibis is accomplished by calculating

for each particle the center to center distance to every other particle. The smallest value

obtained is the nearest neighbor particle spacing for that particular particle being con-

sidered. This calculation is made for every particle that has been positioned. The

nearest neighbor particle spacing for each of these particles is then sunmed together and

this sum is divided by the total number of particles. 'l his result yields the average

nearest neighbor particle spacing.

C. BANDED PARTICLE DISTRIBUTIONS

The program for generating these banded distributions is similar to the program for

random distributions. I lowever, in the input portion, in addition to having to input the

II



size of the area, the particle size, and area fraction, the operator must also provide input

on how much banding is to be introduced into the distribution.

In order to cause banding to occur the original area into which particles are to be
positioned is arbitrarily divided into five sub-regions of equal area, each containing 20

percent of the original area. Additionally, three of these sub-regions were designated as

high particle de,;sity zones and the remaining two sub-regions as low particle density
zones, as shown in Figure 6.

I. - " *-"

C I CC

) I C) C)
0

_ I I Im

1 2 3 4 5

Figure 6. High and low particle region designations

The decisions to make five sub-regions of equal area and to designate three of them as

high density zones and two as low density zones were made arbitrarily and numerous

other arrangements can be envisioned.

In the define parameters portion of the program based upon the input from the

operator the computer determines how many of the particles are to be allocated to each

of the five sub-regions. If for example, the operator determines 80 percent of the parti-

cles will be placed in the high density zones, the computer will place 80 percent of the

12



total number of particles to be positioned in the three high density zones which comprise

60 percent of the total area. The remaining 20 percent of the particles will then be

placed in the two low density zones or the remaining 40 percent of the area. By changing

the percentage of particles which the operator wishes to place in the high density zones

the severity of the banding can then be changed.

Particle overlap checks and the average nearest neighbor particle spacing calculation

are performed in exactly the same manner as those described for the random distribution

program.

13



IV. RESULTS AND DISCUSSION

A. OVERVIEW
To begin this study, plots were generated for random particle distributions of vary-

ing area fractions. From these distributions, the average nearest neighbor particle
spacings were then calculated. After all of the data for the random distributions was

collected, plots were then generated where banding was introduced into the distribution.

Again values for the average nearest neighbor particle spacing were calculated for the

banded particle distributions.

B. BANDED PARTICLE DISTRIBUTIONS
In order to generate the data that was required for this study the computer program

had to be run several times. Each time the program is run it generates one particle dis-

tribution scheme and calculates the averagc nearest neighbor particle spacing for that

particular distributiun. It was therefore necessary to run the program several times for
each set of the input parameters so that a statistical average could be obtained. As the

area fraction that is to be covered with particles is decreased the number of particles to

be positioned consequently is decreased and this can be expected to have an adverse ef-
fect on the statistics. In order to address this problem it was necessary to increase the

number of particles being positioned at low area fractions by either reducing the radius

of the particles or by increasing the size of the array into which they are being posi-

tioned. A minimum of 50 particles positioned appeared to be sufficient to offset the

adverse effects of smaller total number of particles on the statistics. Shown below in

Figures 7 through 10 are examples of random particle distributions of varying particle

size and area fraction.

14
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Additionally in this study average nearest neighbor particle spacing data was generated

for random distributions of particles of three diffcrent sizes, namely, 0.10, 0.25, and 0.50

units. For these three different sizes of particles, parameters such as area fraction, and

array size were varied. The data collected is presented below in Tables I through 3 along

16



with the number of particles per unit area and how many times the program was run for

each condition.

Table 1. DATA FOR PARTICLES OF RADIUS 0.10 UNITS

Area Frac-
tionArray size Number of runs N

0.01 20x20 10 1.0495 0.3157

0.05 10x10 5 0.4507 1.5900

0.10 10x10 2 0.3400 3.1800

0.15 10xl0 1 0.2956 4.7700

0.20 lox 10 I 0.26SS 6.3600

0.30 lx 10 1 0.2458 9.5400

0.40 loxl0 1 0.2295 12.710

Table 2. DATA FOR PARTICLES OF RADIUS 0.25 UNITS
Area Frac-tion Array size Number of Runs 6 N

0.01 30x30 10 2.3705 0.0511

0.05 30x30 10 1.1389 0.2544

0.10 lOxio 10 0.8S59 0.5600

0.15 10×10 10 0.7839 0.7600
0.20 lOxIO 10 0.6736 1.0200

0.30 1Oxio 2 0.6186 1.5300

0.40 10x10 2 0.5785 2.0300

17



Table 3. DATA FOR PARTICLES OF RADIUS 0.50 UNITS

Area Frac- Array Size Number of Runs N

0.01 60x60 5 4.9205 0.0127

0.05 60x60 2 2.7874 0.0636

0.10 30x30 2 1.9761 0.1273

0.15 30x30 2 1.6041 0.1909

0.20 30x30 2 1.4969 0.2546

0.30 30x30 2 1.2741 0.3819

0.40 101O 5 11.1877 0.5100

Typical standard deviations as result of the data that was generated fcr random

distributions of area fractions of 0.10, 0.15, and 0.20 are 0.0479, 0.0271, ana 0.0283 units

respectively. The total number of particles positioned in the lOx 10 area were 51, 76 and

102 respectively.

In Figure 11, the computer generated spacing data are plotted versus number of

particles per unit area for each of the three particle sizes employed. Three resultant

curves were obtaned. T1-_e theoretical variation of 6 with N is shown for both random

distributions of points and regular (hexagonal) arrays. Equation (2.1) and (2.2) will plot
1

as straight lines of slope equal to -- on double logarithmic axes. The computer simu-
2

lations tend to a limit for b which is the random point distribution for small values of

N. Conversely, as the area fraction increases, the spacing decreases but less rapidly than

suggested by the N-1- dependence. It appears that the simulation data can be extrapo-

lated to the solution predicted for a hexagonal array in each case. The area fraction in

each such case is 0.91 and the particles are then in contact. Conversely, the random

point solution predicts patticles in contact at an area fraction of 0.2 for finite, uniform

sized particles.

These results have important implications. Estimates of particle spacing based on

particle counts in cojunction with equation (2.1) are inherently in error. The finite size

of the particles preclude- placement of particles such that overlap would occur and this

results in non-randomness in the distribution. The effect of this can be seen in the up-

ward shift in spacing (relative to the .N-- dependence) as area fraction is increased. In-

deed. as area fraction increases. sinulation run time increased disproportionately to the

IS



increase in numbers of particles as overlap resulted in increasing rejection of pcssible

sites.

Finally, these results suggest that a normalized plot of -- (r, equals particle radius)

versus N will result in a single curve. This in turn suggest a functional relationship

among these parameters although determination of this relationship is beyond the scope

of this work.
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Figure !11. Random distributions of particles

C. EFFECT OF BANDING

This portion of the study examined banded particle distributions similar to those

shown in Figure 2. It is known thermomnechanical processing can result in distributions

in which particles are present in bands of high concentration. It should also be ,,oted

19



that the microstructure of wrought materials can also exhibit this banding Cf their

rmicrostructural constituents.

The computer generated distributions are an attempt to simulate distributions which

are similar to those described above. These distributions had area fractions of 0.10, 0.15,

and 0.20 which are typical values of many MMC's. For this portion of the study the size

of the array was held constant at lOx 10 units and a uniform particle size of 0.25 units

was used. Different degrees of banding were produced by varying the percentage of

particles placed in the three high density zones. Sample plots of random particle dis-

tributions and the associated banded distributions, which were created by placing 90

percent of the p-articles in the three high density zones, are shown in Figures 12 through

17. for the area fractions being considered here. Additional plots that were generated for

this portion of the study are shown in Figures 19 through 30 in Appendix C. In calcu-

lating 6 for each of these different situations the same approach was used. The results

for each of these calculations are also shown below in Tables 4 through 9.
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Figure 12. 0.10 Area fraction with a random distribution
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Figure 13. 0.1I0 Area fraction with 90% of particles in high density zones
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Table 4. NEAREST NEIGHBOR SPACINGS FOR 0.10 AREA FRACTION

Per.:entage of Particles
Placed in High Con- 60%(random) 70% 75/'o 80°%1

centration Bands

0.8304 0.8692 0.8162 0.9039

0.8106 0.9417 0.9599 0.8700

0.9266 0.9702 0.94S9 0.7755

0.9154 0.9472 0.8539 0.8542

Particle Spacing 0.8722 0.8171 0.8992 0.9091

0.98S3 0.8318 0.9020 0.9233

0.8324 0.9330 0.9273 0.8883

0.8803 0.9141 0.8471 0.8908

0.9216 0.9057 0.8727 0.9216

0.8904 0.8655 0.8234 0.8700

Average Particle Spac- 0.8859 0.8933 0.8851 0.8807ing 085 0.93085 080

Table 5. NEAREST NEIGHBOR SPACINGS FOR 0.10 AREA FRACTION

Percentage Placed in
High Concentration 85%0 90%// 100%

Bands

0.8212 0.8622 0.7978

0.846S 0.7582 0.800S

0.7825 0.8978 0.7158

0.8596 0.8717 0.8198

0.8978 0.8189 0.7901

0.8333 0.8686 0.7945

0.7984 0.9220 0.S268

0.8729 0.8368 0.7443

0.8791 0.9593 0.8363

0.S297 0.7915 0.7809

Average Particle Spac- 0.8421 0.8587 0.7907
in L_
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Figure 15. 0.15 Area fraction with 90% of particles in high density zones
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Table 6. NEAREST NEIGHBOR SPACINGS FOR 0.15 AREA FRACTION

Percentage of Particle
Placed in High Con- 60%(random) 70% 75% 80%

centration Bands I_____I

0.8370 0.7559 0.7504 0.7629

0.8084 0.7676 0.7753 0.7573

0.7475 0.7701 0.7782 0.7798

0.7766 0.7824 0.7729 0.7706

0.7580 0.7576 0.7615 0.7582

0.7512 0.7365 0.7921 0.8107

0.7669 0.7411 0.7903 0.7754

0.8098 0.7939 0.8011 0.7058

0.7877 0.7544 0.7607 0.7608

0.7963 0.7629 0.7908 0.7486

Average Particle Spac- 0.7839 0.7622 0.7773 0.7631
ing

Table 7. NEAREST NEIGHBOR SPACINGS FOR 0.15 AREA FRACTION

Percentage of particles
place in high concen- 85% 90% 100%

tration bands.

0.7075 0.7281 0.7024

0.7578 0.7275 0.6620

0.7426 0.7077 0.6725

0.7495 0.7756 0.7233

0.7337 0.7488 0.6603

0.7616 0.7587 0.7064

0.6883 0.7166 0.6611

0.7339 0.769S 0.7008

0.7369 0.7394 0.6978

0.7462 0.7017 0.6714

Average Particle Spac- 0.7357 0.7374 0.6858
ing
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Figure 17. 0.20 Area fraction with 90% of particles in high density zones
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Table 8. NEAREST NEIGHBOR SPACINGS FOR 0.20 AREA FRACTION

Percentage of Particles
Placed in High Con- 60%(random) 70% 75% 80%

centration Bands

0.6712 0.7215 0.6728 0.6950

0.6975 0.6897 0.6979 0.6631

0.6922 0.6941 0.6913 0.6639

0.7007 0.7004 0.6935 0.7144
0.6948 0.6841 0.6724 0.7217

Particle Spacing 0.7013 0.6827 0.6861 0.6819

0.6668 0.6941 0.6794 0.6883

0.7162 0.6774 0.6714 0.6824

0.6803 0.7087 0.6717 0.6828

0.6791 0.6887 0.6916 0.7073
Average Particle Spac- 0.6900 0.6941 0.6828 0.6901

ing

Table 9. NEAREST NEIGHBOR SPACINGS FOR 0.20 AREA FRACTION

Percentage of Particles
Placed in High Con- 85% 90% 1000/o

centration

0.6826 0.6577 0.6220

0.6842 0.6371 0.6367

0.6757 0.6703 0.6362

0.6927 0.6754 0.6380

0.6589 0.6676 0.6205

0.6852 0.6513 0.6416

0.6423 0.6559 0.6113

0.6533 0.6729 0.6109

0.6732 0.6522 0.6347

0.6875 0.6824 0.6279

Average Particle Spac- 0.6736 0.6623 0.6280
ing
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The influence of banding can best be summarized by plotting the average nearest

neighbor particle spacing versus the percentage of particles that are placed in the high

density zones from the data presented above and this is shown in Figure 18.
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Figure 18. Effect of banding on average nearest neighbor particle spacing

Figure 18 clearly demonstrates that as the severity of the banding of the distribution is

increased, that the average nearest neighbor particle spacing decreases. This result also

has important implications in the quantitative assessment of microstructures. The

presence of non-uniform distributions of particles or other microstructural constituents

will result again in spacings which differ from those predicted by equation (2.1) and ob-

tained by experimental determination of the parameter. It is recognized that the banding

introduced here was devised in an arbitrary manner and that other forms of non-

uniformity could yield a different result. It is likely, however, that decreased particle

spacing will result in any circumstance of non-uniform particle distribution and this, in

turn, will influence theoretical assessment of the role of particles in processes such as

yielding and fracture. For example, experimental determination of 6 through evaluation
of N by quantitative metallograqhic methods will result in errors due to banding as well

as errors due to the finite-size problem described in Section B.
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D. CONCLUSIONS AND RECOMMENDATIONS

When dealing with random distributions of finite sized particles care must be taken

if the models for infinitesimal random points is to bo used since the average nearest

neihbor calculations that this approach yields can be in error by as much of a factor

of two. It appears that the infinitesimal random point method and the method for reg-

ular hcxagonl.:l arrays of finite sized particles represent a lower and upper bound, re-

spectivclv, for actual distributions of uniform particles.

In addition, it appears that there is a functional relationship among particle size,

average nearest neighbor particle spacing and the number of particles per unit area.

However, this study did not determine this relationship. Finally. if the average nearest

neighbor particle is a characteristic parameter chosen to describe materials with particle

distributions, then sufficient banding alone can alter (i.e. decrease) this parameter.

Future research using this approach should address distributions of points and

consider the statistics (i.e., standard deviations) in more detail. Subsequent studies

should then include particles of varying size through introduction of a size distribution.

Finally, the problem of non-random distributions should include varying kinds of non-

randomuess and particle size distributions as well.
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APPENDIX A. PROGRAM RANDOMPOINT

Program Randompoint:
(Assign variable types and variables)
type

largearray-array[l..1000] of real;
label 51,52,53,54,55;

var
tothigh,highsect,totlow,lowsect,num,
ranl,ran2,dxl,dx2,dist,dl,totareaparea,dsum,cumavg,avg,mindis,
totmindis,avgmindis,harea,radius,space,y,x,af:real;

elsecte2sect,e3sect,e4sect,eSsect,i,k,m:integer;

minavg,avgsum,posx,posy:largearray:

da30r:text;

begin (program randompoint)

(Open the data file)
assign(da30r,'da30r.txt');
rewrite(da30r);

(Enter initial conditions)
writeln('What is the total area fraction of particles?');
readln(af);
writeln('What is the length of the X-scale?');
readln(x);
writeln('What is the length of the Y-scale?');
readln(y);
writeln('What is the minimum spacing between particles?');
readln(space);
writeln''What is the radius of each particle?');

readln(radius);

(Calculate the total area of the matrix)
totarea:=x*y;

(Calculate the total area of the matrix covered by particles)
af:-(af/lOO)*totarea;

(Calculate the area covered by each particle)
parea:-3.1459*radius*radius;

(Calculate the total number of particles)

num:=af/parea;

(Determine the number of particles found in both the high and
low concentration areas)

writeln('What percentage of the particles do you want in the');
writeln('high concentration areas?');
readln(harea);
tothigh:-harea/l0O*num;
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highsect:-tothigh/3;
tot low: -num-tothigh;
lowsect:-iotlow/2;

(Determine the total number of particles up to the end of each section)
elsect:-round (highsect);
e2sect:-round (highsect+lowsect):
e3sect: -round (2*highsect+lowsect);
e4sect:-round(2*highsect+2*1owsect);
e~sect: -round (3*highsect+2*lowsect);

(Position the particles in the first high concentration section)
randomize;
for i:-1 to elsect, do

begin
51:ranl:-random;

if (ranl>O.2) then
goto 51;

ran2 :-random;
posx(i :-ranl*x;
posy(i] :=ran2*y;

(check for overlap)
for k:-l to (i-1) do

begin
dxl:-posx(i]-posx~k);
dx2:-posyfi]-posy(k]:
dl:=sqrt(dxl*dxl+dx2*dx2);
dist:-(2*radiusl~space);
if (dlcdist) then

goto 51;
end;

writeln(IThe position of particle I,i,' is'):
writeln(posxil);
writeln(posy(ifl;
end;

(position the particles in the low first concentration section)
for i:=(elsect+l) to e2sect do

begin
52: rani :-random;

if (ranl<O.2) or (ranl>O.4) then
goto 52;

ran2 :-random;
posxfi) :.ranl*x;
posyfi) :-ran2*y;

(check for overlap)
for k:-1 to (i-1) do

begin
dxl:=posxti]-posx~k];
dx2:-posyfiJ-posyfk];
dl:=sqrt(dxl*dxl+dx2*dx2);
dist:-(2*radius+space);
if (dl<dist) then

goto 52;
end;

writeln('The position of particle ',, is');
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writeln(posx(i]);
writeln(posy(i]))
end;

(Position the particles in the second high concentration section)
for i:-(e2sect+l) to e3sect do

begin
53: ranl:-random;

if (ranl<O.4) or (ranl>O.6) then
goto 53;

ran2 :-random;
posx(i] :ranl'x;
posyfi) :-ran2*y;

(check for overlap)
for k:-1 to (i-1) do

begin
dx1:-posx~ij-posxfk);
dx2:-posy~i]-posy(k];
dl:=sqrt(dxl*dxl+dx2*dx2);
dist:-(2*radius+space);
if (dldist) then

goto 53;
end;

writeln(IThe position of particle ',i,I is');
writeln(posx[i)
writeln(posy~il);
end;

(Position the particles in the second low concentration zone)
for i:=(e3sect+l) to e4sect do

begin
54 :ranl : random;

if (ranl<O.6) or (ranl>O.8) then
goto 54;

ran2 :=random;
posx(i) :=ranl*x;
posy(iJ :=ran2*y;

(Check for overlap)
for k:=l to (i-1) do

begin
dxl:=posx~i]-posx~k);
dx2:-posyfi)-posy(k);
dl:.sqrt(dxl*dxl+dx2*dx2);
dist:-(2*radius+space);
if (dl<dist) then

goto 54;
end;

writeln(IThe position of particle ',iI is');
writeln(posx(i));
writeln(posyfiJ);
end;

(position the particles in the third high concentration zone)
for i:=(e4sect+l) to e~sect do

begin
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55: ranl :-random;
if (ranl<0.8) th'en

goto 55;
ran2 :-random;
posx~i :-ranl~x;
posy(i :-ran2*y;

(Check for overlap)
for K:-l to (i-1) do

begin
dxl:-posxti]-posx(k];
dx2:-posy(i]-posy(k];
dl: -sqrt (dxl*dxl+dx2*dx2);
dist:-(20radius+space);
if (dl<dist) then

goto 55;
end,

writeln('The position for particle 1,i,' is');
writeln(posxfi]);
writeln(posy(iJ);
end;

(Compute the average distance between particiit:).
writein;
writeln('Please wait, computing the average distance between particles.,);
for i:=l to e~sect do

begin
dsum: =0;
for k:=l to (i-1) do

begin
dxl:=posx[ i]-posxfk];
dx2:-posy~i]-posyfkJ;
dl:=sqrt(dxl*dxl+dx2*dx2);
dsum:-dsum+dl;

end;
if (i-l<>0) then

avgsum~i-l]:=dsum/(i-l);
end;

cumavg :=0;
for m:=1 to (essect-l) do

begin
cumavg: -cumavg+avgsum (in;

end;
avg:=cumavg/(essect-l);
writeln('The average distance between paticles is 1,avg);
writein;
writeln('Please wait, computing the average minimum particle distance,);

(Compute the average distance to the closest particles)
for i:=l to e~sect do

begin
(Compute maximum possible seperation between any two particles)
mindis:=sqrt(x*x+y*y);
for k:-l to (e~sect) do

begin
dxl:-posx(i]-posxfk];
dx2:-posy~ij-posytkj;
dl:-sqrt(dxltdxl+dx2*dx2);
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for i:=l to num do
begin

mindis:-sqrt(x*x+y*y);
for k:-l to (flum) do

begin
dxl:-posxfi]-posx(k];
dx2 :posyfi)-posy[k];
dl:-sqrt(dxl*dxl+dx2*dx2);
if (dl<mindis) and (dl<>O.O) then

mindis: -dl;
end;

minavg(i] :-mindis;
end;

totmindis:;
for m:=l to (nurn) do

begin
totmindis:-totmindis~minavg(m];

end;
avqmindis:-totmindis/(num);
writeln('The average minimum particle distance is 1,avgmindis);
end.
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APPENDIX B. PROGRAM ONLYRAN

Program Onlyran;
type

largearray-arrayfi. .1700J of real;
label 51;

var
dxl, dx2 ,dist, dl,mindis ,totmindis ,avguind is,
ranl, ran2 ,af, pa~ea ,x, y, totarea,space, radius: real;

num, i,k,m: integer;
minavg, avgsum,posx,posy:largearray;

begin

writeln('What is the area fraction of particles?');
readln(af);
writeln('What is the length of the X-scale?');
readln(x);
writeln('What is the length of the Y-scale?');
readln(y);
writeln('What is the minimum spacing between particles?');
readln(space);
writeln('What is the radius of each particle?');
readln(radius);

totarea :=x
af:=(af/1OO) *totarea;
parea:=3.1459*radius*radius;
num: =round (af/parea);

randomize;
for i:=1 to num do

begin
51: ranl :=random;

ran2 :=random;
posxfi] :-ranl*x;
posy(i) :=ran2*y;

(check for overlap)
for k:=1 to (i-1) do

begin
dxl:=posx~i]-posx(k];
dx2 :-posy~i]-posy~k);
dl:-sqrt(dxl*dxl+dx2*dx2);
dist:=(2*radius+space);
if (dlcdist) then

goto 51;
end;

writeln('The position of particle ',i,' is');

writeln(posyi));
end; n~os~i)

writeln('Please wait, computing the average nearest particle spacing');

(compute the average discance to the nearest neighbor)
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if (dl<mindis- and (dl<>O.O) then
mind is:-dl;

end;
minavq~i] :-mindis;

end;
(Compute the average of the closest particle spacings)
totmindis:-0;
for m:-1 to (e5sect) do

begin
totmindis : totmindis+minavg(m J;

end;
avgjmindis:-totmindis/ (e5sect);
writeln('The averge minimum particle distance is 1,avgmindis);
writein;
writein:

(Write positions to a data file)
for m:=1 to e5sect do

begin
writeln(da30r,posx~m]);
writeln(da3Or,posy~m]);

end;
close(da30r);
end.
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APPENDIX C. PARTICLE DISTRIBUT!ION PLOTS
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Figure 19. 0. 10 Area fraction with 70% of particles in high density zone
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Figure 20. 0.10 Area fraction with 75% of partciles in high density zone
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Figure 21. 0.10 Area fraction with 80% of particles in high density zone

0, 00 Z

0 0
00 O0

:D 000 0S 00
0 0 00

0 0 0
00 0 00

8O 0 0 0

00 080 0 0o n0 0

Figure 22. 0.10 Area fraction with 85% of particles in high density zone
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Figure 23. 0.15 Area fraction with 70% of particles in high density zone
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Figure 24. 0.15 Area fraction with 75% of particles in high density zone

38



0 0 0 80
00 0
000 000 0 0

O0 0 C

0 0000 00

0oo Oo0 00 0

00 0000 0
00 0 0 1o-

k 0 0

Figure 25. 0.15 Area fraction with 80% of particles in high density zone
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Figure 26. 0.15 Area fraction with 85% of particles in high density zone
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Figure 27. 0.20 Area fraction with 70% of partciles in high density zone
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Figure 28. 0.20 Area fraction with 75% of particles in high density zone
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Figure 29. 0.20 Area fraction with 80% of particles in high density zone
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Figure 30. 0.20 Area fraction with 85% of particles in high density zone
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